RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 1999 Volume 225, Pages 381–388 (Mi tm733)

This article is cited in 13 papers

The Morse–Novikov Theory of Circle-Valued Functions and Noncommutative Localization

M. Farbera, A. Ranickib

a Tel Aviv University, School of Mathematical Sciences
b University of Edinburgh

Abstract: We use noncommutative localization to construct a chain complex which counts the critical points of a circle-valued Morse function on a manifold, generalizing the Novikov complex. As a consequence we obtain new topological lower bounds on the minimum number of critical points of a circle-valued Morse function within a homotopy class, generalizing the Novikov inequalities.

UDC: 515.14

Received in December 1998

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 1999, 225, 363–371

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024