RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2008 Volume 261, Pages 16–25 (Mi tm736)

This article is cited in 35 papers

Extinction of Solutions of Parabolic Equations with Variable Anisotropic Nonlinearities

S. N. Antontsevab, S. I. Shmarevc

a Departamento de Matemática, Universidade da Beira Interior
b Departamento de Matemática Aplicada, Universidad Complutence
c Departaménto de Matemáticas, Universidad de Oviedo

Abstract: We study the Dirichlet problem for a class of nonlinear parabolic equations with nonstandard anisotropic growth conditions that generalize the evolutional $p(x,t)$-Laplacian. We study the property of extinction of solutions in finite time. In particular, we show that the extinction may take place even in the borderline case when the equation becomes linear as $t\to\infty$.

UDC: 517.956.4

Received in March 2007

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2008, 261, 11–21

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025