Abstract:
We consider a special class of nonlinear systems of ordinary differential equations, namely, the so-called flutter systems, which arise in Galerkin approximations of certain boundary value problems of nonlinear aeroelasticity and in a number of radiophysical applications. Under the assumption of small damping coefficient, we study the attractors of a flutter system that arise in a small neighborhood of the zero equilibrium state as a result of interaction between the $1:1$ and $1:2$ resonances. We find that, first, these attractors may be both regular and chaotic (in the latter case, we naturally deal with numerical results); and second, for certain parameter values, they coexist with the stable zero solution; i.e., the phenomenon of hard excitation of self-oscillations is observed.