RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2008 Volume 261, Pages 243–248 (Mi tm752)

This article is cited in 2 papers

A Mapping Method in Inverse Sturm–Liouville Problems with Singular Potentials

A. M. Savchuk

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In the space $L_2[0,\pi]$, the Sturm–Liouville operator $L_\mathrm D(y)=-y''+q(x)y$ with the Dirichlet boundary conditions $y(0)=y(\pi)=0$ is analyzed. The potential $q$ is assumed to be singular; namely, $q=\sigma'$, where $\sigma\in L_2[0,\pi]$, i.e., $q\in W_2^{-1}[0,\pi]$. The inverse problem of reconstructing the function $\sigma$ from the spectrum of the operator $L_\mathrm D$ is solved in the subspace of odd real functions $\sigma(\pi/2-x)=-\sigma(\pi/2+x)$. The existence and uniqueness of a solution to this inverse problem is proved. A method is proposed that allows one to solve this problem numerically.

UDC: 517.984

Received in March 2007


 English version:
Proceedings of the Steklov Institute of Mathematics, 2008, 261, 237–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025