RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 264, Pages 184–208 (Mi tm799)

This article is cited in 17 papers

Letters of a Bi-rationalist. VII Ordered Termination

V. V. Shokurovab

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b Department of Mathematics, Johns Hopkins University, Baltimore, USA

Abstract: To construct a resulting model in the LMMP, it is sufficient to prove the existence of log flips and their termination for some sequences. We prove that the LMMP in dimension $d-1$ and the termination of terminal log flips in dimension $d$ imply, for any log pair of dimension $d$, the existence of a resulting model: a strictly log minimal model or a strictly log terminal Mori log fibration, and imply the existence of log flips in dimension $d+1$. As a consequence, we prove the existence of a resulting model of 4-fold log pairs, the existence of log flips in dimension 5, and Geography of log models in dimension 4.

UDC: 512.7

Received in August 2008


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 264, 178–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025