RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 264, Pages 63–68 (Mi tm802)

This article is cited in 4 papers

Equivariant Derived Category of Bundles of Projective Spaces

A. Elagin

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia

Abstract: We give an analog of D. O. Orlov's theorem on semiorthogonal decompositions of the derived category of projective bundles for the case of equivariant derived categories. Under the condition that the action of a finite group on the projectivization $X$ of a vector bundle $E$ is compatible with the twisted action of the group on the bundle $E$, we construct a semiorthogonal decomposition of the derived category of equivariant coherent sheaves on $X$ into subcategories equivalent to the derived categories of twisted sheaves on the base scheme.

UDC: 512.7

Received in August 2008


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 264, 56–61

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024