RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 264, Pages 152–164 (Mi tm803)

This article is cited in 10 papers

Two Orbits: When Is One in the Closure of the Other?

V. L. Popov

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia

Abstract: Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional algebraic $G$-module, and let $\mathcal O_1$ and $\mathcal O_2$ be two $G$-orbits in $V$. We describe a constructive way to find out whether or not $\mathcal O_1$ lies in the closure of $\mathcal O_2$.

UDC: 512.7

Received in August 2008


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 264, 146–158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025