RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 264, Pages 109–115 (Mi tm807)

This article is cited in 5 papers

Factoriality of Complete Intersections in $\mathbb P^5$

D. Kosta

School of Mathematics, The University of Edinburgh, Edinburgh, UK

Abstract: Let $X$ be a complete intersection of two hypersurfaces $F_n$ and $F_k$ in $\mathbb P^5$ of degree $n$ and $k$, respectively, with $n\ge k$, such that the singularities of $X$ are nodal and $F_k$ is smooth. We prove that if the threefold $X$ has at most $(n+k-2)(n-1)-1$ singular points, then it is factorial.

UDC: 512.7

Received in August 2008

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 264, 102–109

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025