RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 265, Pages 19–35 (Mi tm819)

This article is cited in 8 papers

Multidimensional Ultrametric Pseudodifferential Equations

S. Albeverioab, S. V. Kozyrevc

a Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany
b Interdisziplinäres Zentrum für Komplexe Systeme, Universität Bonn, Bonn, Germany
c Steklov Mathematical Institute, Moscow, Russia

Abstract: We develop an analysis of wavelets and pseudodifferential operators on multidimensional ultrametric spaces which are defined as products of locally compact ultrametric spaces. We introduce bases of wavelets, spaces of generalized functions and the space $D'_0(X)$ of generalized functions on a multidimensional ultrametric space. We also consider some family of pseudodifferential operators on multidimensional ultrametric spaces. The notions of Cauchy problem for ultrametric pseudodifferential equations and of ultrametric characteristics are introduced. We prove an existence theorem and describe all solutions for the Cauchy problem (an analog of the Kovalevskaya theorem).

UDC: 517.96

Received in December 2008

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 265, 13–29

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025