RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2009 Volume 265, Pages 154–158 (Mi tm830)

This article is cited in 1 paper

On a $p$-adic Wave Equation

A. N. Kochubei

Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, Ukraine

Abstract: It is shown that a "$p$-adic plane wave" $f(t+\omega_1x_1+\dots+\omega_nx_n)$, $(t,x_1,\dots,x_n)\in\mathbb Q_p^{n+1}$, where $f$ is a Bruhat–Schwartz complex-valued test function and $\max_{1\le j\le n}|\omega_j|_p=1$, satisfies, for any $f$, a certain homogeneous pseudodifferential equation, an analog of the classical wave equation. A theory of the Cauchy problem for this equation is developed.

UDC: 517.983.37

Received in June 2008

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2009, 265, 143–147

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025