RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 207, Number 1, Pages 104–111 (Mi tmf10014)

This article is cited in 3 papers

The number of endpoints of a random walk on a semi-infinite metric path graph

V. L. Chernysheva, D. S. Minenkovb, A. A. Tolchennikovcb

a National Research University "Higher School of Economics", Moscow, Russia
b Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University, Moscow, Russia

Abstract: We study a semi-infinite metric path graph and construct the long-time asymptotic logarithm of the number of possible endpoints of a random walk.

Keywords: abstract prime number, counting function, Bose–Maslov distribution.

MSC: 81Q35, 37E25, 11N80, 11N45

Received: 25.11.2020
Revised: 25.11.2020

DOI: 10.4213/tmf10014


 English version:
Theoretical and Mathematical Physics, 2021, 207:1, 487–493

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025