RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 207, Number 2, Pages 310–318 (Mi tmf10022)

This article is cited in 3 papers

Group extensions, fiber bundles, and a parametric Yang–Baxter equation

M. M. Preobrazhenskayaa, D. V. Talalaevabc

a Centre of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia
b Mechanics and Mathematics Faculty, Lomonosov Moscow State University, Russia
c Alikhanov Institute of Theoretical and Experimental Physics, Moscow, Russia

Abstract: We show that any extension of an Abelian group corresponds to a solution of the parametric Yang–Baxter equation. This statement is a generalization of the well-known construction of a braided set in terms of group structure to the case of group extensions. We also show that this construction in the case of a semidirect product is a specialization of a more general construction using principal bundles and that the case of vector bundles considered earlier is an infinitesimal version of the case of a solution coming from the principal bundle structure.

Keywords: parametric Yang–Baxter equation, group extension, principal bundle, shelf.

Received: 07.12.2020
Revised: 10.01.2021

DOI: 10.4213/tmf10022


 English version:
Theoretical and Mathematical Physics, 2021, 207:2, 670–677

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024