RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 208, Number 1, Pages 39–50 (Mi tmf10023)

Integrable symplectic maps via reduction of Bäcklund transformation

Dianlou Du, Yuanyuan Lui, Xue Wang

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China

Abstract: We discuss the stationary potential equations as illustrative examples to explain how to construct integrable symplectic maps via Bäcklund transformations. We first give a terse survey of Bäcklund transformations of the potential KdV equation and the potential fifth-order KdV equation. Then, using Jacobi–Ostrogradsky coordinates, we obtain canonical Hamiltonian forms of the stationary potential equations. Finally, we construct symplectic maps from the reduction of a Bäcklund transformation and verify that they are integrable.

Keywords: integrable symplectic map, stationary potential KdV equation, Bäcklund transformation, Lax representation.

Received: 07.12.2020
Revised: 20.01.2021

DOI: 10.4213/tmf10023


 English version:
Theoretical and Mathematical Physics, 2021, 208:1, 886–895

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024