RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 207, Number 3, Pages 347–360 (Mi tmf10031)

Multi-component Toda lattice in centro-affine ${\mathbb R}^n$

Xiaojuan Duana, Chuanzhong Libc, Jing Ping Wangd

a Department of Mathematics and Physics, Xiamen University of Technology, Xiamen, China
b School of Mathematics and Statistics, Ningbo University, Ningbo, China
c College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
d School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK

Abstract: We use the group-based discrete moving frame method to study invariant evolutions in a $n$-dimensional centro-affine space. We derive the induced integrable equations for invariants, which can be transformed to local and nonlocal multi-component Toda lattices under a Miura transformation, and thus establish their geometric realizations in centro-affine space.

Keywords: discrete moving frame, multi-component Toda lattices, Hamiltonian structures.

MSC: 37K10, 37K60

Received: 13.12.2020
Revised: 13.12.2020

DOI: 10.4213/tmf10031


 English version:
Theoretical and Mathematical Physics, 2021, 207:3, 701–712

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024