RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 207, Number 3, Pages 424–437 (Mi tmf10044)

Dynamics of a singularly perturbed system of two differential equations with delay

I. S. Kashchenko, E. V. Krivets

Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: We study a two-dimensional singularly perturbed system with delay, which is a simplification of models used in laser physics. We analyze several cases of a small parameter multiplying the derivative in the first equation and investigate the behavior of solutions in a neighborhood of a stationary point when the system parameters pass through bifurcation values. Methods for local asymptotic analysis are used to construct special nonlinear equations describing the structure of solutions and the asymptotic approximation of solutions of the original problem.

Keywords: dynamics, singular perturbation, asymptotics, normal form, delay.

MSC: 37G05

Received: 24.12.2020
Revised: 25.02.2021

DOI: 10.4213/tmf10044


 English version:
Theoretical and Mathematical Physics, 2021, 207:3, 770–781

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024