RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 208, Number 1, Pages 122–144 (Mi tmf10048)

Vacuum charge and current densities in the supercritical two-dimensional Dirac–Coulomb system in a magnetic field with an axial-vector potential

A. S. Davydovab, A. A. Krasnovc, V. A. Kuzmina

a Emanuel Institute of Biochemical Physics,, RAS, Moscow, Russia
b State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
c Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider nonperturbative vacuum polarization effects in the supercritical region for a planar Dirac–Coulomb system with a supercritical extended axially symmetric Coulomb source with a charge $Z > Z_{{\rm cr},1}$ and radius $R_0$ in the magnetic field with an axial-vector potential. We study the behavior of the vacuum charge and vacuum current densities, $\rho_{\scriptscriptstyle\mathrm{VP}}(\vec r\,)$ and $\vec{j}_{\scriptscriptstyle\mathrm{VP}}(\vec r\,)$. We focus on the divergence in the theory corresponding to the renormalization and convergence of partial series for $\rho_{\scriptscriptstyle\mathrm{VP}}(\vec r\,)$ and $\vec{j}_{\scriptscriptstyle\mathrm{VP}}(\vec r\,)$. We stress that in contrast to the vacuum charge density, the partial channels with large values of the third projection of the total angular momentum $|m_j|$ must be taken into account in calculating the vacuum current density in the presence of an external magnetic field localized in the range $R_1>R_0$. We show that in the presence of a supercritical Coulomb source, the induced magnetic field can enhance the original magnetic field for certain values of parameters of the external vector potential.

Keywords: planar Dirac–Coulomb system, vacuum polarization, essentially nonperturbative effects for $Z>Z_{\rm cr}$, magnetic vacuum effects, vacuum charge density, vacuum current density.

PACS: 31.30.jf, 31.15.−p, 12.20.−m

Received: 25.12.2020
Revised: 27.02.2021

DOI: 10.4213/tmf10048


 English version:
Theoretical and Mathematical Physics, 2021, 208:1, 958–976

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025