RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 210, Number 3, Pages 422–429 (Mi tmf10198)

Uniqueness of the Pohlmeyer–Lund–Regge system

A. V. Balandin

Institute of Information Technologies, Mathematics, and Mechanics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Abstract: We prove that the Pohlmeyer–Lund–Regge system is, up to coordinate changes, the unique two-component variational system of chiral type with an irreducible metric that admits a Lax representation with values in the algebra $\mathfrak{so}(3)$.

Keywords: chiral-type system, integrable system, Lax representation, Pohlmeyer–Lund–Regge system.

MSC: 35Q51, 37K10, 37K05.

Received: 11.11.2021
Revised: 22.11.2021

DOI: 10.4213/tmf10198


 English version:
Theoretical and Mathematical Physics, 2022, 210:3, 368–375

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024