RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 213, Number 1, Pages 108–128 (Mi tmf10201)

This article is cited in 3 papers

Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group

S. E. Derkachova, G. A. Sarkissianabc, V. P. Spiridonovadb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
c Yerevan Physics Institute, Yerevan, Armenia
d Laboratory for Mirror Symmetry, National Research University "Higher School of Economics", Moscow, Russia

Abstract: We show that the complex hypergeometric function describing $6j$-symbols for the $SL(2,\mathbb C)$ group is a special degeneration of the $V$-function—an elliptic analogue of the Euler–Gauss ${}_2F_1$ hypergeometric function. For this function, we derive mixed difference–recurrence relations as limit forms of the elliptic hypergeometric equation and some symmetry transformations. At the intermediate steps of computations, there emerge a function describing the $6j$-symbols for the Faddeev modular double and the corresponding difference equations and symmetry transformations.

Keywords: $6j$-symbols, $SL(2,\mathbb{C})$ group, elliptic hypergeometric function.

Received: 18.11.2021
Revised: 18.11.2021

DOI: 10.4213/tmf10201


 English version:
Theoretical and Mathematical Physics, 2022, 213:1, 1406–1422

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024