RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 211, Number 3, Pages 455–468 (Mi tmf10281)

This article is cited in 1 paper

Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation

Yu. A. Grishechkin, V. N. Kapshai

Francisk Skorina Gomel State University, Gomel, Belarus

Abstract: We construct approximate analytic solutions of the Logunov–Tavkhelidze equation in the case of a potential that, in the one-dimensional relativistic configuration representation, has the form analogous to the potential of the nonrelativistic harmonic oscillator in the coordinate representation. The wave functions are obtained in both the momentum and relativistic configuration representations. The approximate values of the energy of the relativistic harmonic oscillator are the roots of transcendental equations. The wave functions in the relativistic configuration representation have additional zeros in comparison with the wave functions of the corresponding states of the nonrelativistic harmonic oscillator in the coordinate representation.

Keywords: quasipotential equation, relativistic configuration representation, integral equation, harmonic oscillator, wave function, energy spectrum, Sturm–Liouville problem, Macdonald function.

PACS: 02.30.Gp, 02.30.Hq, 03.65.-w, 03.65.Ge

MSC: 33B15, 33C20, 34B24, 34B30, 34B40, 45B05

Received: 07.03.2022
Revised: 19.03.2022

DOI: 10.4213/tmf10281


 English version:
Theoretical and Mathematical Physics, 2022, 211:3, 826–837

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024