RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 213, Number 3, Pages 495–504 (Mi tmf10282)

This article is cited in 1 paper

Two-dimensional Dirac oscillator in a magnetic field in deformed phase space with minimal-length uncertainty relations

F. A. Dossaa, J. T. Koumagnonb, J. V. Hounguevoub, G. Y. H. Avossevoub

a Faculté des Sciences et Techniques, Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques d'Abomey, Bénin
b Laboratoire de Recherche en Physique Théorique, Institut de Mathématiques et de Sciences Physiques, Université de Porto-Novo, Porto-Novo, Bénin

Abstract: We study the dynamics of the Dirac oscillator in a magnetic field. The Heisenberg algebra is constructed in detail in the noncommutative phase space in the presence of minimal length. By means of the Nikiforov–Uvarov method, the energy eigenvalues are obtained exactly and the corresponding wave functions, in momentum space, are expressed in terms of hypergeometric functions.

Keywords: Dirac oscillator, deformed phase space, minimal length, Nikiforov–Uvarov method.

Received: 08.03.2022
Revised: 14.06.2022

DOI: 10.4213/tmf10282


 English version:
Theoretical and Mathematical Physics, 2022, 213:3, 1738–1746

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024