RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 215, Number 2, Pages 232–241 (Mi tmf10362)

This article is cited in 2 papers

Local dynamics of the model of a semiconductor laser with delay

I. S. Kashchenko, S. A. Kaschenko

Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: We study a model of a semiconductor laser with delay. We discuss the stability of the equilibrium and single out bifurcation parameter values. It turns out that resultant critical cases have infinite dimensions. In the cases where the parameter values are close to critical ones, we constructed first-approximation equations for the asymptotic expansions of solution amplitudes. These equations are nonlinear boundary-value problems of parabolic type, containing integral terms in the nonlinearity in some cases. We present asymptotic formulas that relate solutions of the original model to the constructed boundary-value problems.

Keywords: delay, laser model, dynamics, asymptotics.

MSC: 37G05

Received: 04.09.2022
Revised: 02.10.2022

DOI: 10.4213/tmf10362


 English version:
Theoretical and Mathematical Physics, 2023, 215:2, 658–666

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025