RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 215, Number 3, Pages 421–436 (Mi tmf10373)

A novel kind of a multicomponent hierarchy of discrete soliton equations and its application

Zhenbo  Wanga, Haifeng Wangb, Yufeng Zhanga

a School of Mathematics, China University of Mining and Technology, Xuzhou, China
b School of Science, Jimei University Xiamen, Fujian, China

Abstract: Based on a Lie algebra $\hat g$, we presented a method for constructing multicomponent integrable hierarchies of discrete soliton equations. As an application of the method, we consider the modified Toda spectral problem and obtain a new multicomponent integrable hierarchy of lattice equations with two arbitrary constants, which can be reduced to two multicomponent integrable systems, one of which is the famous Toda lattice system.

Keywords: multicomponent hierarchy of discrete soliton equations, Lie algebra $\hat g$, generalized Toda spectral problem.

PACS: 05.45.Yv, 02.30.Jr, 02.30.

Received: 19.09.2022
Revised: 10.02.2023

DOI: 10.4213/tmf10373


 English version:
Theoretical and Mathematical Physics, 2023, 215:3, 823–836

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024