RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 215, Number 3, Pages 388–400 (Mi tmf10379)

This article is cited in 1 paper

Chaos game in an extended hyperbolic plane

L. N. Romakina, I. V. Ushakov

Saratov State University, Saratov, Russia

Abstract: We obtain formulas for the midpoint and quasimidpoint of parabolic and nonparabolic segments in the canonical frame of the second type on the extended hyperbolic plane $H^2$ whose components in the projective Cayley–Klein model are the Lobachevsky plane $\Lambda^2$ and a positive-curvature hyperbolic plane $\widehat{H}$. We propose an algorithm for the Chaos game in the $H^2$ plane and present the results of this game played with the prepared software package pyv on triangles in the $\Lambda^2$ plane and trihedrals in the $\widehat{H}$ plane.

Keywords: extended hyperbolic plane, Lobachevsky plane, hyperbolic plane of positive curvature, fractal, Chaos game, Sierpinski triangle.

MSC: 51F-05, 51-04

Received: 04.10.2022
Revised: 04.10.2022

DOI: 10.4213/tmf10379


 English version:
Theoretical and Mathematical Physics, 2023, 215:3, 793–804

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024