RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 216, Number 3, Pages 532–547 (Mi tmf10456)

Convergent perturbation theory and the strong coupling limit in quantum electrodynamics

M. V. Komarovaa, M. Yu. Nalimovab

a Saint Petersburg State University, St. Petersburg, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Abstract: The well-known formalism for constructing a convergent quantum field perturbation theory with a finite radius of convergence is modified to obtain convergent series in quantum electrodynamics. We prove that the constructed series converge and determine the radius of convergence. The convergent quantum field perturbation theory is used to study the strong-coupling limit in quantum electrodynamics and in the $\varphi^4$ model of critical behavior. We obtain strong-coupling limits for the $\beta$-functions of the theories under study and confirm that the Landau pole in quantum electrodynamics does exist and is not an artifact of perturbation theory.

Keywords: quantum field perturbation theory, renormalization group, $\beta$-function, strong-coupling limit, QED, quantum electrodynamics, convergent perturbation theory.

Received: 31.01.2023
Revised: 13.03.2023

DOI: 10.4213/tmf10456


 English version:
Theoretical and Mathematical Physics, 2023, 216:3, 1360–1372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024