RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 216, Number 2, Pages 383–400 (Mi tmf10509)

This article is cited in 2 papers

The $p$-adic Ising model in an external field on a Cayley tree: periodic Gibbs measures

F. M. Mukhamedovabc, M. M. Rahmatullaevdc, A. M. Tukhtabaevd, R. Mamadjonovd

a Department of Mathematical Sciences, College of Science, United Arab Emirates University, Abu Dhabi, United Arab Emirates
b Akfa University, Tashkent, Uzbekistan
c Romanovsky Institute of Mathematics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
d Namangan State University, Namangan, Uzbekistan

Abstract: We consider the generalized Gibbs measures corresponding to the $p$-adic Ising model in an external field on the Cayley tree of order two. It is established that if $p\equiv 1\,(\operatorname{mod}\, 4)$, then there exist three translation-invariant and two $G_2^{(2)}$-periodic non-translation-invariant $p$-adic generalized Gibbs measures. It becomes clear that if $p\equiv 3\,(\operatorname{mod}\, 4)$, $p\neq3$, then one can find only one translation-invariant $p$-adic generalized Gibbs measure. Moreover, the considered model also exhibits chaotic behavior if $|\eta-1|_p<|\theta-1|_p$ and $p\equiv 1\,(\operatorname{mod}\, 4)$. It turns out that even without $|\eta-1|_p<|\theta-1|_p$, one could establish the existence of $2$-periodic renormalization-group solutions when $p\equiv 1\,(\operatorname{mod}\, 4)$. This allows us to show the existence of a phase transition.

Keywords: $p$-adic numbers, Ising model, $p$-adic generalized Gibbs measure, translation invariance, periodicity, phase transition.

MSC: 46S10, 82B26, 12J12, 39A70, 47H10, 60K35

Received: 28.03.2023
Revised: 08.05.2023

DOI: 10.4213/tmf10509


 English version:
Theoretical and Mathematical Physics, 2023, 216:2, 1238–1253

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024