Abstract:
A model Helmholtz equation with a localized right-hand side is considered. When writing asymptotics of a solution satisfying the limit absorption principle, a Lagrangian surface naturally appears that has a logarithmic singularity at one point. Because of this singularity, the solution is localized not only in a neighborhood of the projection of the Lagrangian surface onto the coordinate space but also in a neighborhood of a certain ray “escaping” from the Lagrangian surface and going into the region forbidden in the classical approximation.