Abstract:
We consider a liquid layer of a finite depth described by Euler's equations. The ice cover is geometrically modeled by a nonlinear elastic Kirchhoff–Love plate. We determine the trajectories of liquid particles under an ice cover in the field of a nonlinear surface traveling wave rapidly decaying at infinity, namely, a solitary wave packet (a monochromatic wave under the envelope, with the wave velocity equal to the envelope velocity) of a small but finite amplitude. Our analysis is based on the use of explicit asymptotic expressions for solutions describing the wave structures at the water–ice interface of a solitary wave packet type, as well as asymptotic solutions for the velocity field generated by these waves in the depth of the liquid.
Keywords:ice cover, solitary wave packet, bifurcation, central manifold, trajectories of liquid particles.