RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 219, Number 2, Pages 335–351 (Mi tmf10608)

Gibbs measures for fertile models with hard-core interactions and four states

R. M. Khakimovab, B. Z. Tozhiboeva

a Namangan State University, Namangan, Uzbekistan
b Romanovsky Institute of Mathematics, Tashkent, Uzbekistan

Abstract: We consider fertile models with hard interactions, four states, and an activity parameter $\lambda>0$ on a Cayley tree. We show that there are three types of such models: “stick,” “key,” and “generalized key.” For the “generalized key” model on a Cayley tree of order $k=4$, the uniqueness of the translation-invariant Gibbs measure is proved, and conditions for the existence of double-periodic Gibbs measures other than the translation-invariant ones are found. Moreover, in the case of a fertile graph of the “stick” type, the translation invariance of double-periodic Gibbs measures on a Cayley tree of orders $k=2,3,4$ is shown and conditions for the existence of double-periodic Gibbs measures other than the translation-invariant ones on a Cayley tree of order $k\geq5$ are found.

Keywords: Cayley tree, configuration, fertile HC model, Gibbs measure, translation-invariant measures, periodic measures.

Received: 16.09.2023
Revised: 12.02.2024

DOI: 10.4213/tmf10608


 English version:
Theoretical and Mathematical Physics, 2024, 219:2, 823–838

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024