RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 219, Number 1, Pages 32–43 (Mi tmf10635)

On the existence of certain elliptic solutions of the cubically nonlinear Schrödinger equation

H. W. Schürmanna, V. S. Serovb

a Department of Mathematics, Computer Science, Physics, University of Osnabrüc, Osnabrück, Germany
b Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland

Abstract: We consider solutions of the cubically nonlinear Schrödinger equation. For a certain class of solutions of the form $\Psi(t,z)=(f(t,z)+id(z))e^{i\phi(z)}$ with $f,\phi,d\in\mathbb{R}$, we prove that they are nonexistent in the general case $f_z\neq 0$, $f_t\neq 0$, $d_z\neq 0$. In the three nongeneric cases ($f_z\neq 0$), ($f_t\neq 0$, $f_t=0$, $d_z=0$), and ($f_z=0$, $f_t\neq 0$), we present a two-parameter set of solutions, for which we find the constraints specifying real bounded and unbounded solutions.

Keywords: nonlinear Schrödinger equation, Weierstrass elliptic functions, traveling wave.

Received: 07.11.2023
Revised: 25.12.2023

DOI: 10.4213/tmf10635


 English version:
Theoretical and Mathematical Physics, 2024, 219:1, 557–566

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025