RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 220, Number 2, Pages 377–395 (Mi tmf10640)

Geometry and probability on the noncommutative $2$-torus in a magnetic field

M. N. Hounkonnouab, F. Melongab

a International Chair in Mathematical Physics and Applications, University of Abomey-Calavi, Cotonou, Benin
b International Centre for Research and Advanced Studies in Mathematical and Computer Sciences, and Applications (ICMPA—UNESCO Chair), Cotonou, Benin

Abstract: We describe the geometric and probabilistic properties of a noncommutative $2$-torus in a magnetic field. We study the volume invariance, integrated scalar curvature, and the volume form by using the operator method of perturbation by an inner derivation of the magnetic Laplacian operator on the noncommutative $2$-torus. We then analyze the magnetic stochastic process describing the motion of a particle subject to a uniform magnetic field on the noncommutative $2$-torus, and discuss the related main properties.

Keywords: noncommutative $2$-torus, magnetic Laplacian, quantum stochastic process.

MSC: 46L87; 81S25

Received: 14.11.2023
Revised: 14.11.2023

DOI: 10.4213/tmf10640


 English version:
Theoretical and Mathematical Physics, 2024, 220:2, 1385–1401

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024