RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 219, Number 2, Pages 249–262 (Mi tmf10665)

This article is cited in 1 paper

On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model

M. V. Artemevaa, M. O. Korpusovab

a Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
b Peoples' Friendship University of Russia, Moscow, Russia

Abstract: We consider a $(1+1)$-dimensional thermal–electrical model of semiconductor heating in an electric field. For the corresponding initial-boundary value problem, we prove the existence of a classical solution that cannot be continued in time and obtain sufficient conditions for the blow-up of the solution in a finite time.

Keywords: nonlinear Sobolev-type equations, solution blow-up, local solvability, nonlinear capacity, blow-up time estimates.

Received: 26.12.2023
Revised: 26.12.2023

DOI: 10.4213/tmf10665


 English version:
Theoretical and Mathematical Physics, 2024, 219:2, 748–760

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024