RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1997 Volume 113, Number 1, Pages 85–99 (Mi tmf1067)

This article is cited in 18 papers

Proof of the absence of multiplicative renormalizability of the Gross–Neveu model in dimensional regularization $d=2+2\varepsilon$

A. N. Vasil'ev, M. I. Vyazovskii

Saint-Petersburg State University

Abstract: We prove that the simplest four-fermion Gross–Neveu model with dimensional regularization $d=2+2\varepsilon$ is not multiplicatively renormalizable due to the counterterm generated by the three-loop vertex diagrams that is proportional to the evanescent operator [1] $V_3=(\bar\psi\gamma_{ikl}^{(3)}\psi )^2/2$, where $\gamma_{i_1\dots i_n}^{(n)}$ is the fully antisymmetric product of $n$ $\gamma$-matrices and is not zero in arbitrary dimensions. Therefore, calculations of the $(2+\varepsilon)$-expansion of the critical indices $\eta$ and $\nu$ in the framework of the simple Gross–Neveu model are correct only to $\varepsilon^4$ for $\eta$ and to $\varepsilon^3$ for $\nu$. In higher orders, one must take into consideration the generation of other (not only $V_3$) evanescent operators.

Received: 15.05.1997

DOI: 10.4213/tmf1067


 English version:
Theoretical and Mathematical Physics, 1997, 113:1, 1277–1288

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024