RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 220, Number 2, Pages 350–376 (Mi tmf10681)

Generalized Chaos game in an extended hyperbolic plane

L. N. Romakina, I. V. Ushakov

Saratov State University, Saratov Russia

Abstract: We propose and theoretically substantiate an algorithm for conducting a generalized Chaos game with an arbitrary jump on finite convex polygons of the extended hyperbolic plane $H^2$ whose components in the Cayley–Klein projective model are the Lobachevsky plane and its ideal domain. In particular, the defining identities for a point dividing an elliptic, hyperbolic, or parabolic segment in a given ratio are proved, and formulas for calculating the coordinates of such a point at a canonical frame of the first type are obtained. The results of a generalized Chaos game conducted using the advanced software package pyv are presented.

Keywords: extended hyperbolic plane, Lobachevsky plane, hyperbolic plane of positive curvature, fractal, Chaos game.

MSC: 51N25,51N30

Received: 22.01.2024
Revised: 06.06.2024

DOI: 10.4213/tmf10681


 English version:
Theoretical and Mathematical Physics, 2024, 220:2, 1361–1384

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024