Abstract:
We study applications of the connection between the partition functions of the Potts models and Tutte polynomials: it is demonstrated how the Kramers–Wannier duality can be derived from the Tutte duality. Using the “contraction–elimination” relation and the Biggs formalism, we derive the high-temperature expansion and discuss possible methods for generalizing the Kramers–Wannier duality to models on nonplanar graphs.
Keywords:Ising model, Potts model, Tutte polynomials, Biggs model, Kramers–Wannier duality.