RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 220, Number 2, Pages 213–236 (Mi tmf10690)

This article is cited in 2 papers

Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation

V. V. Alekseev, M. M. Preobrazhenskaia

Centre of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: The relaxation self-oscillations of the Mackey–Glass equation are studied under the assumption that the exponent in the nonlinearity denominator is a large parameter. We consider the case where the limit relay equation, which arises as the large parameter tends to infinity, has a periodic solution with the smallest number of breaking points on the period. In this case, we prove the existence of a periodic solution of the Mackey–Glass equation that is asymptotically close to the periodic solution of the limit equation.

Keywords: Mackey–Glass equation, asymptotics, periodic solution, delay differential equation, large parameter.

PACS: 02.30.Hq

MSC: 34E10

Received: 02.02.2024
Revised: 04.03.2024

DOI: 10.4213/tmf10690


 English version:
Theoretical and Mathematical Physics, 2024, 220:2, 1241–1261

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025