RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 222, Number 1, Pages 122–135 (Mi tmf10752)

Nonlocal symmetries of the Degasperis–Procesi equation

Xiaoyong Li, Changzheng Qu

School of Mathematics and Statistics, Ningbo University, Ningbo, China

Abstract: We study nonlocal symmetries of the Degasperis–Procesi equation, which are shown to be closely related to its integrable structure. First, applying the Hamiltonian operator to the gradients of the spectral parameter, we construct nonlocal symmetries of the Kaup–Kupershmidt equation. Next, we show that the nonlocal symmetries can be prolonged to local symmetries for a prolonged system by introducing new dependent variables. Finally, applying the Liouville transformation relating the Degasperis–Procesi and Kaup–Kupershmidt hierarchies, we obtain the corresponding nonlocal symmetries of the Degasperis–Procesi equation.

Keywords: nonlocal symmetry, Hamiltonian operator, Liouville transformation, Degasperis–Procesi equation, Kaup–Kupershmidt equation.

Received: 07.05.2024
Revised: 07.09.2024

DOI: 10.4213/tmf10752


 English version:
Theoretical and Mathematical Physics, 2025, 222:1, 106–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025