RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 223, Number 2, Pages 191–207 (Mi tmf10832)

Universality of stochastic Laplacian growth

O. V. Alekseev

Chebyshev Laboratory,, Department of Mathematics and Computer Science, Saint-Petersburg State University, St.  Petersburg, Russia

Abstract: We consider a stochastic Laplacian growth model within the framework of normal random matrices. In the limit of large matrix size, the support of eigenvalues forms a planar domain with a sharp boundary that evolves stochastically as the matrix size increases. We show that the most probable growth scenario is similar to deterministic Laplacian growth, while alternative scenarios illustrate the impact of fluctuations. We prove that the probability distribution function of fluctuations is given by the circular unitary ensemble introduced by Dyson in 1962. The partition function of fluctuations is shown to be universal, depending solely on the fluctuation intensity and the problem's geometry, regardless of the initial domain shape.

Keywords: statistical physics, random matrices, Laplacian growth.

PACS: 02.50.−r; 05.40.-a; 47.15.gp

MSC: 76D27; 60G;

Received: 24.09.2024
Revised: 16.02.2025

DOI: 10.4213/tmf10832


 English version:
Theoretical and Mathematical Physics, 2025, 223:2, 691–704

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025