RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 224, Number 2, Pages 276–296 (Mi tmf10895)

Noncommutative $n$-torus in the magnetic field: volume, scalar curvature, and quantum stochastic equation

M. N. Hounkonnouab, F. Melongab

a International Chair of Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey-Calavi, Cotonou, Benin
b International Centre for Research and Advanced Studies in Mathematical and Computer Sciences, and Applications (ICRASMCSA), Cotonou, Benin

Abstract: Motivated by the works published in 2003 by Chakraborty et al. [J. Operator Theory, 49 (2003), 185–201], and by Sakamoto and Tanimura [J. Math. Phys., 44 (2003), 5042–5069], we investigate the noncommutative $n$-torus in a magnetic field. We study the invariance of volume, integrated scalar curvature, and volume form using the method of perturbation by the inner derivation of the magnetic Laplacian in this geometric framework. Moreover, we derive the magnetic stochastic process describing the motion of a particle in a uniform magnetic field in this torus and deduce the properties of solutions of the corresponding magnetic quantum stochastic differential equation.

Keywords: noncommutative torus, magnetic Laplacian, quantum stochastic process.

MSC: 46L87; 81S25

Received: 25.01.2025
Revised: 14.05.2025

DOI: 10.4213/tmf10895


 English version:
Theoretical and Mathematical Physics, 2025, 224:2, 1340–1358


© Steklov Math. Inst. of RAS, 2025