Abstract:
In the framework of magnetic fields, thermophoresis, porous media, and Brownian motion, this study examines the rotation and Hall current effects on an electrically conductive, viscous, incompressible, non-Newtonian Eyring–Powell fluid, including nanofluid particles, across a stretched sheet. The governing nonlinear partial differential equations (PDEs) in this work are converted into ordinary differential equations (ODEs) using appropriate similarity transformations. This system of ODEs is then numerically solved using the MATLAB bvp4c solver. Effects of numerous crucial factors on the velocity, temperature, and concentration profiles are shown in graphs. Furthermore, the stretched sheet mass transfer rate, heat transfer rate, and skin-friction coefficient are calculated and shown in tables. The published results and the present findings are compared in a tabular analysis.
Keywords:Hall current, three dimensional flow, nanofluid, Eyring–Powell fluid, magnetic field, porous medium, stretching sheet, rotation.