RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 225, Number 3, Pages 629–646 (Mi tmf11046)

Existence of three-particle bound states in optical lattice

S. N. Lakaevab, Sh. I. Khamidovb, S. S. Ulashova

a Samarkand State University, Samarkand, Uzbekistan
b Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan

Abstract: We consider a system of three particles consisting of two identical fermions and one other particle on a one-dimensional lattice. The fermions interact via a nearest-neighbor potential of strength $\mu_1\in\mathbb{R}$, while the interaction between a fermion and one other particle is via an on-site potential with strength $\mu_2\in\mathbb{R}$. We establish existence of bound states of the associated three-body lattice Schrödinger operator for all values of the total quasimomentum $K\in\mathbb{T}^1$. Furthermore, we show that both the bound state $f_{\mu_1\mu_2}(K;\,{\cdot}\,{,}\,{\cdot}\,)$ and its corresponding eigenvalue $E_{\mu_1\mu_2}(K)$ depend holomorphically on the quasimomentum.

Keywords: Schrödinger operator, three-particle, Hamiltonian, zero-range, bound state, eigenvalue, boson, fermion, lattice.

PACS: 03.65.Ge

MSC: 81Q10

Received: 10.07.2025
Revised: 25.08.2025

DOI: 10.4213/tmf11046



© Steklov Math. Inst. of RAS, 2025