Abstract:
In the example of a weakly imperfect Bose gas, we discuss the mechanism of establishing thermodynamic equilibrium for a chaotic set of quantum vortex filaments. We assume that the dynamics of the Bose condensate is described by the Gross–Pitaevsky equation with an additional noise satisfying the fluctuation-dissipation theorem. In considering a vortex filament as the intersection line of surfaces on which the real and imaginary parts of the order parameter $\psi(\mathbf x,t)$ vanish, we obtain an equation of the Langevin type for elements of the vortex filament with an appropriately transformed random force. The Fokker–Planck equation for the probability density has a solution given by the Gibbs distribution at the temperature of the Bose condensate. In other words, when the Bose condensate is in thermal equilibrium and no other random actions exist, the system of vortices is also in thermal equilibrium.