RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1996 Volume 108, Number 1, Pages 84–100 (Mi tmf1179)

This article is cited in 1 paper

Quantization of the external algebra on a Poisson–Lie group

G. E. Arutyunovab, P. B. Medvedevab

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The external algebra $\mathcal M$ on $GL(N)$ is show to be equipped with graded Poisson brackets compatible with the group action. The corresponding Poisson–Hopf superalgebra structures on $\mathcal M$ are classified. They form two families, each of them is parametrized by two continuous parameters $(\alpha,\beta)$. It is shown that the structures from the first family with $\alpha=0=\beta$ appear as the semiclassical limit of the bicovariant differential calculi on the quantum linear group $GL_q(N)$.

Received: 17.09.1995

DOI: 10.4213/tmf1179


 English version:
Theoretical and Mathematical Physics, 1996, 108:1, 916–929

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025