Abstract:
We consider equations of nonrelativistic quantum mechanics in thin three-dimensional tubes (nanotubes). We suggest a version of the adiabatic approximation that permits reducing the original three-dimensional equations to one-dimensional equations for a wide range of energies of longitudinal motion. The suggested reduction method (the operator method for separating the variables) is based on the Maslov operator method. We classify the solutions of the reduced one-dimensional equation. In Part I of this paper, we deal with the reduction problem, consider the main ideas of the operator separation of variables (in the adiabatic approximation), and derive the reduced equations. In Part II, we will discuss various asymptotic solutions and several effects described by these solutions.