RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1995 Volume 104, Number 1, Pages 32–42 (Mi tmf1323)

This article is cited in 2 papers

The $[n_1,n_2,\dots,n_s]$-th reduced KP hierarchy and $W_{1+\infty}$ constraints

J. van de Leur


Abstract: To every partition $n=n_1+n_2+\dots+n_s$ one can associate a vertex operator realization of the Lie algebras $a_{\infty}$ and $\hat{gl}_n$. Using this construction we obtain reductions of the $s$-component KP hierarchy, reductions which are related to these partitions. In this way we obtain matrix KdV type equations. We show that the following two constraints on a KP $\tau$–function are equivalent (1) $\tau$ is a $\tau$–function of the $[n_1,n_2,\dots ,n_s]$–th reduced KP hierarchy which satisfies string equation, $L_{-1}\tau =0$, (2) $\tau$ satisfies the vacuum constraints of the $W_{1+\infty}$ algebra.

Language: English


 English version:
Theoretical and Mathematical Physics, 1995, 104:1, 783–792

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025