RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 134, Number 1, Pages 18–31 (Mi tmf137)

This article is cited in 9 papers

Integrable Structure Behind the WDVV Equations

Kh. Aratina, Zh. van de Lerb

a University of Illinois at Chicago
b Mathematical Research Institute

Abstract: An integrable structure behind the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations is identified with the reduction of the Riemann–Hilbert problem for the homogeneous loop group $\widehat{GL}(N,\mathbb C)$. The reduction requires the dressing matrices to be fixed points of an order-two loop group automorphism resulting in a subhierarchy of the $\widehat{gl}(N,\mathbb C)$ hierarchy containing only odd-symmetry flows. The model has Virasoro symmetry; imposing Virasoro constraints ensures the homogeneity property of the Darboux–Egoroff structure. Dressing matrices of the reduced model provide solutions of the WDVV equations.

Keywords: WDVV equations, dressing, Darboux–Egoroff metrics, Kadomtsev–Petviashvili hierarchies, tau functions, Riemann–Hilbert factorization.

DOI: 10.4213/tmf137


 English version:
Theoretical and Mathematical Physics, 2003, 134:1, 14–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025