RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1993 Volume 94, Number 2, Pages 213–231 (Mi tmf1418)

This article is cited in 22 papers

Paragrassmann differential calculus

A. T. Filippov, A. P. Isaev, A. B. Kurdikov

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics

Abstract: This paper significantly extends and generalizes the paragrassmann calculus of our previous paper [1]. Here we discuss explicit general constructions for paragrassmann calculus with one and many variables. For one variable, nondegenerate differentiation algebras are identified and shown to be equivalent to the algebra of $(p+1)\times (p+1)$ complex matrices. If $(p+1)$ is a prime integer, the algebra is nondegenerate and so unique. We then give a general construction of many-variable diffeentiation algebras. Some particular examples are related to multi-parametric quantum deformations of the harmonic oscillators.

Received: 11.09.1992

Language: English


 English version:
Theoretical and Mathematical Physics, 1993, 94:2, 150–165

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024