Abstract:
We develop a representation of quantum states in which the states are described by fair probability distribution functions instead of wave functions and density operators. We present a one-random-variable tomography map of density operators onto the probability distributions, the random variable being analogous to the center-of-mass coordinate considered in reference frames rotated and scaled in the phase space. We derive the evolution equation for the quantum state probability distribution and analyze the properties of the map. To illustrate the advantages of the new tomography representations, we describe a new method for simulating nonstationary quantum processes based on the tomography representation. The problem of the nonstationary tunneling of a wave packet of a composite particle, an exciton, is considered in detail.
Keywords:quantum tomography, state reconstruction, tunneling, quantum dynamics, computer simulation.