RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2005 Volume 142, Number 2, Pages 388–402 (Mi tmf1790)

This article is cited in 1 paper

Jost–Lehmann–Dyson representation, analyticity in the angular variable, and upper bounds in noncommutative quantum field theory

Yu. S. Vernova, M. N. Mnatsakanovab

a Institute for Nuclear Research, Russian Academy of Sciences
b Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Abstract: We prove the existence of an analogue of the Jost–Lehmann–Dyson representation in noncommutative quantum field theory for the case where the noncommutativity affects only the spatial variables. Using this representation, we show that there is a certain class of elastic scattering amplitudes that have an analytic continuation to the complex $\cos\vartheta$ plane with the Martin ellipse as the related analyticity domain. Using the analyticity in the angular variable and the unitarity as a basis, we establish an analogue of the Froissart–Martin bound for the total cross section in the noncommutative case.

Keywords: noncommutativity, quantum field theory, local commutativity, analyticity, unitarity, Jost–Lehmann–Dyson representation, Lehmann ellipse, Martin ellipse, Froissart–Martin bound.

DOI: 10.4213/tmf1790


 English version:
Theoretical and Mathematical Physics, 2005, 142:2, 324–336

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024