RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 135, Number 2, Pages 196–223 (Mi tmf182)

This article is cited in 2 papers

Realization of the Universal $s\ell_q(2)$-Symmetric $R$-Operator in a Function Space for General and Exceptional Values of the Deformation Parameter

D. R. Karakhanyan

Yerevan Physics Institute

Abstract: Based on the realization of representations of the algebra $s\ell_q(2)$ in the space of polynomials for general values of the deformation parameter $q$ and on a finite tuple of theta functions, which are a natural generalization of polynomials, we construct the eigenstates and find the related eigenvalues of the universal $R$-operator for cyclic representations corresponding to $q^N=\pm1$.

Keywords: exactly solvable models, universal $R$-matrix, cyclic representations, $N$th root of unity, eigenvalues.

Received: 13.05.2002

DOI: 10.4213/tmf182


 English version:
Theoretical and Mathematical Physics, 2003, 135:2, 614–637

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024