RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2005 Volume 144, Number 2, Pages 313–323 (Mi tmf1856)

This article is cited in 26 papers

Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions

V. S. Gerdjikova, G. G. Grahovskia, N. A. Kostovb

a Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences
b Institute of Electronics, Bulgarian Academy of Sciences

Abstract: We analyze the fundamental properties of models of the multicomponent nonlinear Schrodinger (NLS) type related to symmetric spaces and construct new types of reductions of these systems. We briefly describe the spectral properties of the Lax operators L, which in turn determine the corresponding recursion operator Ë and the fundamental properties of the relevant class of nonlinear evolution equations. The results are illustrated by specific examples of NLS-type systems related to the $\bold{DIII}$ symmetric space for the $so(8)$ algebra.

Keywords: multicomponent nonlinear Schrodinger equation, reduction group, symmetric spaces, Hamiltonian properties.

DOI: 10.4213/tmf1856


 English version:
Theoretical and Mathematical Physics, 2005, 144:2, 1147–1156

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024